skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lemagie, Emily"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract A unique feature of small mountainous rivers is that discharge can be elevated by an order of magnitude during a large rain event. The impact of time-varying discharge on freshwater transport pathways and alongshore propagation rates in the coastal ocean is not well understood. A suite of simulations in an idealized coastal ocean domain using the Regional Ocean Modeling System (ROMS) with varying steady background discharge conditions (25–100 m 3 s −1 ), pulse amplitude (200–800 m 3 s −1 ), pulse duration (1–6 days), and steady downwelling-favorable winds (0–4 m s −1 ) are compared to investigate the downstream freshwater transport along the coast (in the direction of Kelvin wave propagation) following a discharge pulse from the river. The nose of the pulse propagates rapidly alongshore at 0.04–0.32 m s −1 (faster propagation corresponds with larger pulse volume and faster winds) transporting 13%–66% of the discharge. The remainder of the discharge volume initially accumulates in the bulge near the river mouth, with lower retention for longer pulse duration and stronger winds. Following the pulse, the bulge eddy disconnects from the river mouth and is advected downstream at 0–0.1 m s −1 , equal to the depth-averaged wind-driven ambient water velocity. As it transits alongshore, it sheds freshwater volume farther downstream and the alongshore freshwater transport stays elevated between the nose and the transient bulge eddy. The evolution of freshwater transport at a plume cross section can be described by the background discharge, the passage of the pulse nose, and a slow exponential return to background conditions. 
    more » « less